Verified Indifferentiable Hashing into Elliptic Curves
نویسندگان
چکیده
Many cryptographic systems based on elliptic curves are proven secure in the Random Oracle Model, assuming there exist probabilistic functions that map elements in some domain (e.g. bitstrings) onto uniformly and independently distributed points in a curve. When implementing such systems, and in order for the proof to carry over to the implementation, those mappings must be instantiated with concrete constructions whose behavior does not deviate significantly from random oracles. In contrast to other approaches to public-key cryptography, where candidates to instantiate random oracles have been known for some time, the first generic construction for hashing into ordinary elliptic curves indifferentiable from a random oracle was put forward only recently by Brier et al. We present a machine-checked proof of this construction. The proof is based on an extension of the CertiCrypt framework with logics and mechanized tools for reasoning about approximate forms of observational equivalence, and integrates mathematical libraries of group theory and elliptic curves.
منابع مشابه
Efficient Indifferentiable Hashing into Ordinary Elliptic Curves
We provide the first construction of a hash function into ordinary elliptic curves that is indifferentiable from a random oracle, based on Icart’s deterministic encoding from Crypto 2009. While almost as efficient as Icart’s encoding, this hash function can be plugged into any cryptosystem that requires hashing into elliptic curves, while not compromising proofs of security in the random oracle...
متن کاملIndifferentiable deterministic hashing to elliptic and hyperelliptic curves
At Crypto 2010, Brier et al. proposed the first construction of a hash function into ordinary elliptic curves that was indifferentiable from a random oracle, based on Icart’s deterministic encoding from Crypto 2009. Such a hash function can be plugged into any cryptosystem that requires hashing into elliptic curves, while not compromising proofs of security in the random oracle model. However, ...
متن کاملIndifferentiable Hashing to Barreto-Naehrig Curves
A number of recent works have considered the problem of constructing constant-time hash functions to various families of elliptic curves over finite fields. In the relevant literature, it has been occasionally asserted that constant-time hashing to certain special elliptic curves, in particular so-called BN elliptic curves, was an open problem. It turns out, however, that a suitably general enc...
متن کاملAn Indifferentiable Hash Function into Elliptic Curves
We provide the first construction of a hash function into an elliptic curve that is indifferentiable from a random oracle. Our construction can be based on any efficient encoding into an elliptic-curve, for example Icart’s function or the Shallue-Woestijne-Ulas (SWU) algorithm.
متن کاملHashing into Hessian Curves
We describe a hashing function from the elements of the finite field Fq into points on a Hessian curve. Our function features the uniform and smaller size for the cardinalities of almost all fibers compared with the other known hashing functions for elliptic curves. Moreover, a point on the image set of the function is uniquely given by its abscissa. For ordinary Hessian curves, the cardinality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Computer Security
دوره 21 شماره
صفحات -
تاریخ انتشار 2012